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Symmetry-preserving difference schemes for some heat
transfer equations
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Abstract. Lie group analysis of differential equations is a generally recognized method, which
provides invariant solutions, integrability, conservation laws etc. In this paper we present three
characteristic examples of the construction of invariant difference equations and meshes, where
the original continuous symmetries are preserved in discrete models. Conservation of symmetries
in difference modelling helps to retain qualitative properties of the differential equations in their
difference counterparts.

1. Introduction

Symmetries are intrinsic and fundamental features of the differential equations of
mathematical physics. Consequently, they should be retained when discrete analogues of
such equations are constructed.

The group properties of a heat-transfer equation with a source

ut = (K(u)ux)x +Q(u) (1)

were considered in [4], and all choices ofK(u) andQ(u) which extend the symmetry group
admitted by the general case of equation (1) were identified. In this paper we consider two
partial cases of nonlinearities from the classification in [4]:

ut = (uσux)x ± un σ, n = constant (2)

ut = uxx + δu ln u δ = ±1 (3)

together with linear case

ut = uxx (4)

whose group properties were known by Lie. For all cases we construct difference equations
and meshes (lattices) that admit the same Lie group of point transformations as their
continuous limits.

We recall that Lie point symmetries yield a number of useful properties of differential
equations [13, 16, 10].

(a) A group action transforms the complete set of solutions into itself; so it is possible
to obtain new solutions from a given one.

(b) There exists a standard procedure to obtain the whole set of invariants and differential
invariants for a symmetry group; it yields the invariant representation of the differential
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equations and the forms of invariant solutions in which they could be found (symmetry
reduction of partial differential equations (PDEs).

(c) For ordinary differential equations (ODEs) the known symmetry yields the reduction
of the order; if the dimension of symmetry is equal to (or greater than) the order of the
ODE, then we have complete integrability.

(d) The invariance of PDEs is a necessary condition for the application of Noether’s
theorem on variational problems to obtain conservation laws.

(e) It should be noted that Lie point transformations have a clear geometrical
interpretation and one can construct the orbits of a group in a finite-dimensional space
of independent and dependent variables.

The structure of the admitted group essentially affects the construction of equations and
grids. Group transformations can break the geometric structure of the mesh that influences
the approximation and other properties of a difference equation. Early contributions to the
construction of the difference grids based on the symmetries of the initial difference model
are [6, 8]. Classes of transformations that conserve uniformity, orthogonality, and other
properties of meshes will be defined below.

In accordance with equation (1) we consider Lie point transformations in a space with
two independent variables:t andx. Let

X = ξ t ∂
∂t
+ ξx ∂

∂x
+ η ∂

∂u
+ · · · (5)

be an operator of a one-parameter transformation group. Dots denote prolongation of the
operator on other variables used in the given differential equation:

F(x, t, ut , u, ux, uxx) = 0. (6)

The group generated by (5) transforms a point(x, t, u, ut , ux, uxx) to a new one
(x∗, t∗, u∗, u∗t , u

∗
x, u
∗
xx) together with equation (6). This situation changes when applying

Lie point, transformations to difference equations. Let

F(z) = 0 (7)

be a difference equation defined on some finite set of pointsz1, z2, . . . (difference stencil) on
a mesh. In contrast to the point(x, t, u, ut , ux, uxx), the ‘difference point’—the difference
stencil has its own geometrical structure.

Let

�(z, h) = 0 (8)

be an equation that defines a difference stencil and a mesh. As an example it will be a
uniform mesh if the left step (spacing) equals the right step:

h+ = h−. (9)

The invariance of the difference equation (7) depends on the invariance of (8), since
the latter must be included in the general condition of invariance:{

XF(z)|(7)(8) = 0

X�(z, h)|(7)(8) = 0.
(10)

Relations between the two conditions in (10) depend on whether�, ξ t andξx depend
on the solution or not. If�u = ξ tu = ξxu = 0, then the conditions (10) could be considered
independently.

Thus, what makes our approach [5–8] special is the inclusion of the second equation of
(10) in the conditions of invariance, admitting the whole set of properties (a)–(e) stated for
equations (7) and (8).
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There exist a few ways to avoid transformations of the difference stencil and,
consequently, transformations of a mesh. One way is to restrict transformations to the case
when independent variables are not changed:ξ t = ξx = 0, yielding any mesh invariant (see
[12]). But this restriction is very strong and would exclude most symmetries of physical
problems.

Another approach is connected to evolutionary vector fields. It is known [10, 16] that
the symmetry operator could be represented as

X̄ = (η − ξ tut − ξxux) ∂
∂u
+ · · · (11)

which could be viewed as representative of a factor algebra by the ideal

ξ t (z)Dt + ξx(z)Dx (12)

where Dt = ∂
∂t
+ ut

∂
∂u
+ · · · and Dx = ∂

∂x
+ ux

∂
∂u
· · · are both admitted by all

equations (6). For differential equations this approach gives an equivalent result but with
some losses in points (a)–(e). In particular we lose the geometric sense even for point
transformations due to the realization of group transformations in infinite-dimensional spaces
(t, x, ut , ux, utx, uxx, utt , · · ·), there is no procedure for calculating invariants of operators
of the type given by (11) etc.

As was shown in [5], the exact representation of the operator of total differentiationDx

in a space of difference variables is given by the following operators (the same is also true
for Dt ):

D+ = ∂

∂x
+ D̃
+h
(u)

∂

∂u
+ · · ·

D− = ∂

∂x
+ D̃
−h
(u)

∂

∂u
+ · · ·

(13)

where D̃
+h
= ∑∞

n=1
(−h)n−1

n D
+h
n, D̃
−h
= ∑∞

n=1
hn−1

n D
−h
n andD

+h
, D
−h

are right and left difference

operators on a uniform mesh. As difference operators are related to corresponding shift
operatorsS

+h
, S
−h

:

D
±h
= ±

( S
±h
−1)

h

we obtain another representation forD̃
±h

:

D̃
+h
=
∞∑
n=1

(−h)n−1

n
D
+h
n =

∞∑
n=1

(−1)n−1

nh
( S
+h
−1)n (14)

D̃
−h
=
∞∑
n=1

(1− S
−h
)n

nh
. (15)

The group transformation for operators (13) can be obtained by the exponential mapping
or by means of the so-called Newton series (see [5]). It is important to note that every
difference equation on a regular mesh admits the operatorsD+ andD−, which do not
change a mesh. It was shown [5], that a family of operatorsξ(z)D± forms an ideal in the
Lie algebra of operators (5), since it is possible to rewrite these operators as evolutionary
vector fields

X̄ = (η − ξ tD+t (u)− ξxD+x (u))
∂

∂u
+ · · · . (16)
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(We follow here the right semiaxis representationD+. The same formulation can be done
with help of left semiaxis representationD−.)

It is important to notice that the representation (13) is true only for regular (uniform)
meshes. Thus, the evolutionary vector fields (16) are applicable only for the groups which
do not change the uniformity of a mesh. So, one cannot apply them for modern numerical
methods with moving meshes, self adaptive meshes or multigrid methods etc.

Let us consider a one-parameter transformation group which is generated by the operator

X = ξ ∂
∂x
+ η ∂

∂u
+ · · · . (17)

We prolong (17) on the right and left stepsh+, h− by means of relationsh+ = x+ − x and
h− = x − x−, wheref ± ≡ S

±h
(f ):

X = ξ ∂
∂x
+ η ∂

∂u
+ · · · + [ S

+h
(ξ)− ξ ]

∂

∂h+
+ [ξ − S

−h
(ξ)]

∂

∂h−
. (18)

From (18) it is easy to obtain the invariance condition for a uniform mesh in a given
direction. Let (9) be invariant with respect to (18), then

S
+h
(ξ)− 2ξ + S

−h
(ξ) = 0 or D

+h
D
−h
(ξ) = 0. (19)

Condition (19) is a strong limitation on the admitted group. In addition the coefficients
of (16) are the power series ofD

±h
or S
±h

, since one should consider the whole set of mesh

points and not a stencil only.
Let us illustrate the above with a simple example. The ODE

uxx = u2 (20)

can be viewed as the stationary case of equation (2) withσ = 0, n = 2. Equation (20) has
the following Lie point symmetries:

X1 = ∂

∂x
X2 = x ∂

∂x
− 2u

∂

∂u
. (21)

As a difference analogue of (20) we consider

u+ − 2u+ u−
h2

= u2 (22)

on a uniform mesh

h+ = h− (23)

whereu+ = S
+h
(u) andu− = S

−h
(u).

Equations (22) and (23) use a three-point stencil or subspace(x, x+, x−, u, u+, u−) and
the operators (21) have the following prolongation for the shifted points of the difference
stencil:

X1 = ∂

∂x
+ ∂

∂x+
+ ∂

∂x−

X2 = x ∂
∂x
+ x+ ∂

∂x+
+ x− ∂

∂x−
− 2u

∂

∂u
− 2u+

∂

∂u+
− 2u−

∂

∂u−
+ h+ ∂

∂h+
+ h− ∂

∂h−
.

(24)

The symmetry algebra (21) acts on the space(t, x), so the coefficients of (24) have the
same form in different points of the stencil. The prolongation forms forh+ and h− are
easily derived from the relationsh+ = x+ − x, h− = x − x−.
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It is easy to verify that equations (22) and (23) are invariant under the action of (24):

X2

(
u+ − 2u+ u−

h2
− u2

)
|(22)

= 0

X2(h
+ − h−)|(23) = 0.

(25)

(OperatorX1 leaves (22) and (23) unchanged.)
It follows that the system (22) and (23) has the same Lie point symmetry as its

continuous limit. Note that the invariance conditions (25) are mutually independent.
As for the continuous case one can easily calculate the finite-difference invariants for

(24) by solving the standard system:

XiI
τ (x, h+, h−, u, u+, u−) = 0 i = 1, 2 τ = 1, 2, 3, 4. (26)

The solution of (26) yields the whole set of difference invariants

I 1 = h+

h−
I 2 = u+

u
I 3 = u−

u
I 4 = (h+)2u. (27)

It follows that the difference model (22) and (23) can be represented by means of the
invariants (27) asI 2+ I 3− 2= I 4 andI 1 = 1.

Let us now consider the evolutionary vector fields for the difference equation (22) (we
consider the right semiaxis representationD+). We prolong the operator (13) on all points
of a given stencil(x, x+, x−, u, u+, u−):

D+ = ∂

∂x
+ ∂

∂x+
+ ∂

∂x−
+ ux ∂

∂u
+ u+x

∂

∂u+
+ u−x

∂

∂u−
(28)

where

ux ≡
∞∑
n=1

(−h)n−1

n
D
+h
n(u) u+x ≡

∞∑
n=1

(−h)n−1

n
D
+h
n(u+)

and

u−x ≡
∞∑
n=1

(−h)n−1

n
D
+h
n(u−).

The evolution vector fields (16) will have the following forms:

X̄1
h

= −X1+D+ = ux ∂
∂u
+ u+x

∂

∂u+
+ u−x

∂

∂u−

X̄2
h

= −X2+ xD+ = −h+ ∂

∂h+
− h− ∂

∂h−
+ (2u+ xux) ∂

∂u
+ (2u+ + xu+x )

∂

∂u+

+(2u− + xu−x )
∂

∂u−
.

(29)

It is not easy to check the invariance conditions of equation (22) for the operators
(29) because one should use not only equation (22), but all its sequences obtained by
shifting to the right. A harder question is how to produce the finite-difference invariants
(27) by means of (29). That is why we prefer the first classical method for Lie point
symmetries and include a mesh in the invariance condition (10) (a very similar approach for
the semi-discretized nonlinear heat equation was introduced recently in [3]). An additional
convincing reason to apply the classical representation of Lie point symmetries springs from
comparison of unsuitable evolutionary vector fields approaches with invariant variational
problems, developed in [5], and a clear classical way to construct Noether type theorems
for difference equations [7].
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Another approach to the symmetry of difference equations on a fixed uniform mesh was
introduced in [9]. However, that method is only applicable to linear equations; moreover, it
requires knowing a complete set of solutions of difference equations. The newly introduced
approach [11] deals with evolutionary vector fields on a uniform mesh. The advantage of
the last two approaches seems to be in the potential of finding non-point symmetries of
difference equations which are not available in their continuous limits.

Returning to equation (1), we note that a transformation defined by (5) conserves
uniformity of a grid in t andx directions, if

D+τ D−τ
(ξ t ) = 0 (30)

D
+h
D
−h
(ξx) = 0 (31)

whereD+τ
andD−τ

are right and left difference operators in thet direction.

Conditions (30) and (31) are not sufficient to describe the invariance of an orthogonal
mesh. For an orthogonal mesh to conserve its orthogonality under the transformation, it is
necessary and sufficient that [6, 8]:

D
+h
(ξ t ) = −D+τ (ξ

x). (32)

When condition (32) is not satisfied for a given group, the flatness of the layer of a
grid in some direction is rather important. For evolution equations it is significant to have
flat time layers, since otherwise, after transformations, some domains of a space could be
in the future, while others in the past. We have a simple criterion [6, 8] for preserving the
flatness of the layer of a grid in the time direction under the action of a given operator (5):

D
+h
D+τ
(ξ t ) = 0. (33)

So, the conditions (30)–(33) provide a geometry of grids that is based on the Lie group
symmetry. These conditions will be used in what follows.

2. Invariant model for the equation ut = (uσux)x ± un

The equation

ut = (uσux)x ± un σ, n = constant (34)

admits a 3-parameter symmetry group. This group can be represented by the following
infinitesimal operators [4]:

X1 = ∂

∂t
X2 = ∂

∂x
X3 = 2(n− 1)t

∂

∂t
+ (n− σ − 1)x

∂

∂x
− 2u

∂

∂u
. (35)

The set (35) satisfied all conditions (30)–(33). So, we can use an orthogonal grid that is
uniform in the t and x directions. Let us consider the set of operators (35) in the space
(t, t̂ , x, h+, h−, u, u+, u−, û, û+, û−) that corresponds to the stencil shown in figure 1.

There are seven difference invariants of the Lie algebra (35):

τ
n−σ−1
2(n−1)

h
τun−1 û

u

u+
u

u−
u

û+
û

û−
û
. (36)

The small number of symmetry operators (35) provides us with a large number of difference
invariants (36). Thus we are left with some additional degrees of freedom in invariant
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Figure 1.

difference modelling of (34). By means of the invariants (36), we could write the following
explicit scheme for (34):

û− u
τ
= 1

h

((
u+ + u

2

)σ
u
h
x −

(
u+ u−

2

)σ
u
h
x̄

)
± un (37)

whereu
h
x = u+−u

h
, ux̄
h

= u−u−
h

.

This scheme is not unique and one could construct another form of invariant difference
equation. For example an implicit scheme could be as follows:

û− u
τ
= 1

h2
(ûσ+1
+ − 2ûσ+1+ ûσ+1

− )+ ûn. (38)

Note, that the continuous limit of the last difference equation

ut = (uσ+1)xx + un. (39)

is equivalent to equation (34) up to the scaling ofx. But scheme (38) is not equivalent to
scheme (37), because there is no point transformation that relates them. In [18] Samarskii
et al considered the casen = σ + 1 and found a finite-difference blow-up solution for
equation (38) that is invariant with respect to the operator

X∗3 = (t − T0)
∂

∂t
− 1

σ
u
∂

∂u
(40)

where T0 is constant. The operator (40) defines a subgroup which is equivalent to the
self-similar subgroup with the operatorX3 of the set (35). Let us find the solution of the
problem (38) in the invariant form:

u =
(

1− t

T0

)−1/σ

θ(x).

This solution is sought [18] on the set of infinite number of time intervals on [0, T0]:

τj = T0
ρσ + 1

ρσ
ρ−σj (41)

whereρ > 1 is constant.
For the functionθ(x) we have the equation

(θσ+1)x̄x + θσ+1 = 1

σ
θ. (42)

The solution of the problem (42) was found in [18] for the caseσ = 2. Let us fix an
arbitraryM > 0 and leth = 2 sin( 3π

2(M+1) ). In this case the localization length equals

lh = 3πh

2

(
arcsin

h

2

)−1

0< h 6 2
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Figure 2.

(see [18]). Then, one can verify that the solution of the problem (42) in the pointsxk = kh
has the form

θkh =
√

2

(
3

(
1− 4

h2
sin2 ahh

2

))−1/2

sin(ahkh) k = 0, 1, . . . ,M + 1 (43)

whereah = π/lh.
The obtained functionu gives the blow-up solution of the problem in the caseσ = 2,

β = 3, l = lh. This solution tends to infinity in all points of the space grid, conserving the
structure. Ash→ 0, the difference solution (43) tends to the solution of the ODE:

θ(x) =
(

3

4

)1/2

sin
(x

3

)
0< x < l0 = 3π.

3. Invariant difference model for the semilinear heat-transfer equation

The semilinear heat-transfer equation

ut = uxx + δu ln u δ = ±1 (44)

admits the 4-parameter Lie symmetry group of point transformations [4], that corresponds
to the following infinitesimal operators:

X1 = ∂

∂t
X2 = ∂

∂x
X3 = 2eδt

∂

∂x
− δeδt xu ∂

∂u
X4 = eδtu

∂

∂u
. (45)

Before constructing a difference equation and grid that approximate (44) and inherit
the whole Lie algebra (45), we should first check condition (32) for the invariance of
orthogonality. The operatorsX1, X2 and X4 conserve orthogonality, butX3 does not:
condition (32) is not true for the last operator. Consequently an orthogonal mesh cannot be
used for the invariant modelling of (44).

The conditions (33) are true for the complete set (45), so it is possible to use a
nonorthogonal grid with flat time layers. An example of a grid with with flat time layer is
shown in figure 2.

A possible reformulation of equation (44) by using the four differential invariants in the
subspace(t, x, u, ux, uxx, dt, dx, du):

J 1 = dt J 2 =
(ux
u

)2
− uxx

u
J 3 = 2

ux

u
+ dx

dt

J 4 = du

udt
− δ ln u+ 1

4
(dx/dt)2.
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Figure 3.

is given by the system:{
J 3 = 0

J 4 = J 2

or 
dx

dt
= −2

ux

u

du

dt
= uxx + δu ln u− 2

u2
x

u
.

(46)

So, the structure of the group (45) suggests the use of two evolution equations.
As the next step, we will find difference invariants for the setX1–X4 of the group (45).

These invariants are necessary for the approximation of the system (46). We will use the 6-
point difference stencil, as shown in figure 3 on which we will approximate the system (46).
The stencil defines the difference subspace(t, t̂ , x, x̂, h+, h−, ĥ+, ĥ−, u,u+,u−, û,û+,û−).
The group (45) has the following difference invariants in this subspace:

I 1 = τ I 2 = h+ I 3 = h− I 4 = ĥ+ I 5 = ĥ−
I 6 = (ln u)x − (ln u)x̄ I 7 = (ln û)x − (ln û)x̄
I 8 = δ1x + 2(eδτ − 1)

(
h−

h+ + h− (ln u)x +
h+

h+ + h− (ln u)x̄
)

I 9 = δ1x + 2(1− e−δτ )

(
ĥ−

ĥ+ + ĥ− (ln û)x +
ĥ+

ĥ+ + ĥ− (ln û)x̄
)

I 10 = δ(1x)2+ 4(1− e−δτ )(ln û− eδτ ln u)

where1x = x̂ − x, (ln u)x = ln u+−ln u
h+ and(ln u)x̄ = ln u−ln u−

h− .
To obtain an invariant difference model, it is natural to use the difference invariants.

An explicit model is given by
I 8 = 0

I 10 = 8

δ

(eδI
1 − 1)2

I 2+ I 3
I 6

or
δ1x + 2(eδτ − 1)

(
h−

h+ + h− (ln u)x +
h+

h+ + h− (ln u)x̄
)
= 0

δ(1x)2+ 4(1− e−δτ )(ln û− eδτ ln u) = 8

δ

(eδτ − 1)2

h+ + h− [(ln u)x − (ln u)x̄ ].

(47)

As in the continuous case, there is a reduction in the difference case. When we consider
an invariant solution, we have the reduction of the equation-grid system to a system of ODEs.
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One being the difference model for the considered equation, the other for the evolution of
the grid.

Let us find the solution of the difference model (47) which is invariant with respect to
the operator

2αX2+X3 α = constant (48)

u exp
(

δeδt

α+eδt
x2

4

)
,
(

1x
eδt (eδτ−1) − x

α+eδt

)
and t are all the invariants with respect to (48).

Therefore we will seek an invariant solution in the form:
u(x, t) = exp

(
− δeδt

α + eδt
x2

4

)
ef (t)

1x

eδt (eδτ − 1)
= x

α + eδt
+ g(t).

Substituting this form of the solution into (47), we obtain a system of ODEs to determine
f (t) andg(t):

f (t + τ)− eδτ f (t)

e

δτ

(eδτ − 1) = −1

2

eδt

α + eδt

g(t) = 0.

The solution of this system yields the solution of the difference equation (47):

u(x, t) = exp

(
eδt
(
f (0)− eδτ − 1

2

n−1∑
j=1

e−δtj

1+ αe−δtj

)
− δeδt

α + eδt
x2

4

)
and the grid

x = x0 eδt + α
1+ α .

Herex = xji = xi(tj ) and t = tj . For t = 0 the grid can be arbitrary, but if a regular grid
is used it will be regular on every time layer.

The obtained solution is the solution of the Cauchy problem with initial conditions:

u(x, 0) = exp

(
f (0)− δeδt

α + eδt
x2

4

)
.

4. Invariant discrete version of the linear heat equation

The linear heat-transfer equation

ut = uxx (49)

admits a 6-parameter Lie symmetry group of point transformations, corresponding to the
following infinitesimal operators:

X1 = ∂

∂t
X2 = ∂

∂x
X3 = 2t

∂

∂x
− xu ∂

∂u
X4 = 2t

∂

∂t
+ x ∂

∂x

X5 = 4t2
∂

∂t
+ 4tx

∂

∂x
− (x2+ 2t)u

∂

∂u
X6 = u ∂

∂u

(50)

and an infinite-dimensional symmetry obtained from the linearity of equation (49):

X∗ = a(x, t) ∂
∂u
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Figure 4.

wherea(t, x) in an arbitrary solution of equation (49).
Now we are in a position to show that the invariant difference model for the linear

heat-transfer equation cannot be constructed on an orthogonal grid. The model

û− u
τ
= u+ − 2u+ u−

h2
(51)

on the regular orthogonal mesh, which is used as an invariant model in [2], (see also [1,
p 363]), actually does not admit operatorsX3 andX5.

Let us check, for example, the symmetry that is described byX3. The operatorX3

generates the following transformations

x∗ = x + 2tα

t∗ = t (52)

u∗ = ue−xα−tα
2
.

This transformation destroys the orthogonality of the mesh as shown in figure 4.
The transformation (52) transforms the finite-difference equation (51) into the following:

ûe−τα
2 − u
τ

= u+e−hα − 2u+ u−ehα

h2
(53)

which explicitly depends on a group parameterα. The first differential approximation of
equation (53)

ut = uxx − 4αux + 2uα2+O(τ + h)
shows explicitly the absence of invariance for equation (51) on an orthogonal mesh.

Consequently, we have to construct a difference model for (49) on a moving mesh.
With help of the differential invariants in the space(t, x, u, ux, uxx, dt, dx, du):

J 1 = dx + 2ux
u

dt

dt1/2
J 2 = du

u
+ 1

4

dx

dt

2

+
(
−uxx
u
+ u

2
x

u2

)
dt

we can represent the heat equation (49) as the system:{
J 1 = 0

J 2 = 0

or 
dx

dt
= −2

ux

u

du

dt
= uxx − 2

u2
x

u
.

(54)
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System (54) inherits the set of operatorsX1–X6, X∗. Implying that it entirely inherits the
Lie symmetry group admitted by the linear heat equation (49).

For the difference modelling of the system (54) we need the whole set of difference
invariants of the Lie symmetry group (50) in the difference space, corresponding to the
chosen stencil(t, t̂ , x, x̂, h+, h−, ĥ+, ĥ−, u, û, u+, u−, û+, û−):

I 1 = h+

h−
I 2 = ĥ+

ĥ−
I 3 = ĥ+h+

τ

I 4 = τ 1/2

h+
û

u
exp

(
1

4

(1x)2

τ

)
I 5 = 1

4

h+2

τ
− h+2

h+ + h−
(

1

h+
ln
u+
u
+ 1

h−
ln
u−
u

)
I 6 = 1

4

ĥ+2

τ
+ ĥ+2

ĥ+ + ĥ−
(

1

ĥ+
ln
û+
û
+ 1

ĥ−
ln
û−
û

)
I 7 = 1xh+

τ
+ 2h+

h+ + h−
(
h−

h+
ln
u+
u
− h

+

h−
ln
u−
u

)
I 8 = 1xĥ+

τ
+ 2ĥ+

ĥ+ + ĥ−

(
ĥ−

ĥ+
ln
û+
û
− ĥ

+

ĥ−
ln
û−
û

)
.

Approximating the system (54) by these invariants as was done for the semilinear
heat equation, we obtain a system of difference evolution equations. As an example, we
present here an invariant difference model that has explicit equations for the solution and
the trajectory ofx:

1x = 2τ

h+ + h−
(
−h
−

h+
ln
u+
u
+ h

+

h−
ln
u−
u

)
(u
û

)2
exp

(
−1

2

(1x)2

τ

)
= 1− 4τ

h+ + h−
(

1

h+
ln
u+
u
+ 1

h−
ln
u−
u

)
.

(55)

5. Example of an exact solution

Let us find the solution of the difference model (55) for the heat equation that is invariant
with respect to the operator

2αX2+X3, α = constant. (56)

The operator (56) has three invariants:t and the expressionsu exp
(
− x2

4(t+α)
)

and(
1x
τ
− x

t+α
)
. So, we will seek the invariant solution in the form:

u(x, t) = f (t) exp

(
− x2

4(t + α)
)

1x

τ
= g(t)+ x

t + α .
Substituting this form of the solution to the system (55), we obtain ordinary difference
equations forf (t) andg(t): f (t + τ) =

(
t + α

t + τ + α
)1/2

f (t)

g(t) = 0.

(57)
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Solving this system, we find the solution of the difference equation

u(x, t) = f (0)
(

α

t + α
)1/2

exp

(
− x2

4(t + α)
)

and the solution for the evolution of a grid:

x = x0

(
t + α
α

)
.

The obtained solution is the solution of the Cauchy problem with the invariant initial
condition:

u(x, 0) = f (0) exp

(
− x

2

4α

)
.

If α = 0, the fundamental solution of the heat equation

u(x, t) = C
(

1

t

)1/2

exp

(
−x

2

4t

)
(58)

is a solution of the difference model. This solution holds on the grid:

1x = τ

t
x.

In all cases listed above the difference mesh is arbitrary at the initial point,t = 0. In
this case it will not be uniform on other time layers. If the grid is uniform in thex–direction
at t = 0 (h+ = h− = h), the steps of the grid in thex–direction will be equal to each other
on every time layer, but differ from steps on the previous time layer.

It is necessary to mention that the obtained difference invariant solution is the solution
of the corresponding differential equation that is invariant with respect to the operator (56).
As in the differential case the above reduction procedure can be applied for every subalgebra
of the algebra (50), and then one obtains different moving meshes which are self-adaptive
to every solution.

Thus, the above difference models inherit both groups of the differential equations and
the potential to be integrated on a subgroup.

6. Numerical calculations

Here we do not discuss the questions of stability and convergence of the developed schemes.
These are hard questions for nonlinear schemes, but one of the ways to check them is by
computing the numerical solutions to the exact solutions of the original differential equations.
Below we present the results of numerical calculation of the invariant solution (58) by means
of the invariant model (55). It is necessary to note that the calculations were not carried out
for equations (57) reduced on the subgroup, but for the nonstationary equations (55). Initial
data correspond to the solution (58) witht = 10. In figure 5 we present the evolution ofu
from invariant initial data by the invariant scheme (55).

Let us note that the difference model (55) gives us practically the exact solution for
equation (49). The difference between the solution of the model (55) and the exact solution
of the equation (49) is shown in figure 6.

In figure 7 the evolution of the grid in the plane(t, x) for the calculation of the solution
(58) is shown.

The same calculations for the difference equation (51) on the orthogonal grid (as that
in figure 1) gives a similar picture (see figure 8).
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Figure 5.

Figure 6.

In this case the solution does not coincide with exact solution of the equation (49). The
difference between the exact and numerical solution is shown in figure 9.

We should note that for the calculation on the model (55) we defined the boundary
valuesu on the moving ends of the space interval. For the difference equation (51) we
defined the boundary values ofu on the ends of the fixed orthogonal grid in accordance
with the same solution. The comparison of the two different models shows that for the
invariant model even on the decreasing number of the points of the grid on the initial space
interval we have greater accuracy than for the noninvariant one.
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Figure 7.

Figure 8.

7. Remarks

Following the above technique for the Burgers equation for the potential

wt + 1
2w

2
x = wxx

we obtain the finite-difference model for this equation on a moving mesh
1x = τ

h−w
h
x + h+w

h
x̄

h+ + h−

exp

(
ŵ − w − 1x

2

2τ

)
= 1+ τ w

h
xx̄

wherew
h
xx̄ = 2

h−+h+ (wh x − w
h
x̄).

It is interesting to note that this model is connected with model (55) by the same Hopf
transformation

w = −2 lnu
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Figure 9.

as their continuous counterparts.
It is important to note that in all cases the moving in(x, t)-plane meshes can be stopped

by the new coordinates of Lagrange’s type with one additional dependent variable (for
involvement of those coordinates see, for example, [14]).

Acknowledgments

This work was partly supported by The Norwegian Research Council under contract no
111038/410, through the SYNODE project, and Russian Fund for Base Research.

References

[1] Ames W F, Anderson R L, Dorodnitsyn V A, Ferapontov E V, Gazizov R K, Ibragimov N H and Svirshevskii
S R 1994 Symmetries, exact solutions and conservation lawsCRC Handbook of Lie Group Analysis of
Differential Equationsvol 1 (Boca Raton, FL: Chemical Rubber Company)

[2] Ames W F 1977Numerical Methods for Partial Differential Equations2nd edn (New York: Academic)
[3] Budd C and Collins G 1997 An invariant moving mesh scheme for the nonlinear diffusion equationAppl.

Num. Math.to appear
[4] Dorodnitsyn V A 1982 On invariant solutions of a nonlinear heat transfer equation with a sourceZh. Vychisl.

Mat. i Mat. Fiz. 22 1393 (in Russian)
[5] Dorodnitsyn V A 1987 Taylor’s group and transformations, conserving finite differencesPreprint Keldysh

Institute of Applied Mathematics, N67, Moscow
Dorodnitsyn V A 1988 Newton’s group and commutative properties of Lie–Backlund operators in finite

difference spacePreprint Keldysh Institute of Applied Mathematics N175, Moscow
Dorodnitsyn V A 1991 Transformation groups in mesh spacesJ. Sov. Math.55 N1 1490

[6] Dorodnitsyn V A 1993 Finite-difference models entirely inheriting symmetry of original differential equations
Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics
(Dordrecht: Kluwer) p 191

[7] Dorodnitsyn V A 1993 Finite-difference analogue of Noether’s theoremDokl. Akad. Nauk SSSR328 N6 678
(in Russian)

[8] Dorodnitsyn V 1994 Invariant discrete models for the Korteweg–de Vries equationCRM-2187(Universite
de Monreal)

[9] Floreanini R and Vinet L 1995 Lie symmetries of finite difference equationsJ. Math. Phys.36 7024
[10] Ibragimov N H 1995Transformation Groups Applied to Mathematical Physics(Dordrecht: Reidel)



Symmetry preserving difference schemes 8155

[11] Levi D, Vinet L and Winternitz P 1997 Lie group formalism for difference equationsJ. Phys. A: Math. Gen.
30 633–49

[12] Maeda S 1987 The similarity method for difference equationsJ. Inst. Math. Appl.38 129.
[13] Ovsiannikov L V 1982 Group Analysis of Differential Equations(New York: Academic)
[14] Ovsiannikov L V 1981 Lections on Gas Dynamics(Moscow: Science) (in Russian)
[15] Ovsiannikov L V 1959 Group properties of a nonlinear heat equationDokl. Akad. Nauk SSSR125 N3 492

(in Russian)
[16] Olver P J 1986Application of Lie Groups to the Differential Equations(New York: Springer)
[17] Samarskii A A and Sobol I M 1963 Examples of numerical solutions of temperature wavesZh. Vychisl. Mat.

i Mat. Fiz. 3 N4 702 (in Russian)
[18] Samarskii A A, Galaktionov V A, Kurdiumov S P and Mikhailov A P 1994 Blow-up in Problems for

Quasilinear Parabolic Equations(Berlin: de Gruyter)


